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Instrumental Variables

We learn:
I What are instrumental variables (IV)?
I How can they be used to identify causal effects?
I Interpretation of IV estimators is different from OLS. We

learn why.

This lecture is based on
I Angrist & Pischke (2009), Ch. 4.1, 4.2, 4.4
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IV: Starting Point

yi = α+ βDi + ui

CIA cov(Di , ui) = 0 often doesn’t hold⇒ OLS estimates of β
are biased
I Unobserved heterogeneity: we may not observe all

confounding variables
I Di may be measured with error
I Simultaneity or reverse causality
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Instrumental Variables
In theory, instrumental variables offer a way to
I break the correlation cov(Di , ui)

I and obtain a consistent causal estimate of the treatment
on yi

Idea behind an instrumental variable (Z):
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Instrumental Variables

1) An IV affects Y only through its effect on D

2) It must not be correlated with unobservable characteristics
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Instrumental Variables

One way to think about an IV:
I people/firms make optimal choices that affect their

treatment status
I Z is a shock that changes the behavior of at least some

people/firms
I Z has to be unrelated to people’s characteristics
I i.e. it should be assigned as good as randomly

And another:
I The instrument Z is a treatment/incentive that is offered to

units/people
I D measures if the unit actually takes up the treatment
I The instrument Z should be as good as randomly assigned
I Example: randomly assigned school vouchers
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Instrumental Variables

And another:
I OLS uses all the variation in D to explain y
I IV uses only the variation in D that is related to Z
I So this means less variation is used, but at least Z is

unrelated to u
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Instrumental Variables Lingo

IV requires two ingredients:
I First stage: cov(Z ,D) , 0
I Exclusion restriction: cov(Z , u) = 0
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First Stage and Exclusion Restriction

The first-stage relationship is testable
I we can run a regression of D on Z
I it is also possible to include covariates

The exclusion restriction is not testable
I it is an identification assumption
I we need to make a convincing argument in favor of it
I this is difficult and the reason for heated debates in seminars

Some say: friends tell their friends not to use IV...
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IV Equations: Two-Stage Least Quares (2SLS)

Relationship of interest

yi = α+ βDi + X ′i γ + ui

First stage
Di = δ0 + δ1Zi + X ′i ρ+ ei

Second stage (D̂i from first stage)

yi = α̃+ β̃D̂i + X ′i κ + εi

Reduced form
yi = λ0 + λ1Zi + X ′i σ+ ηi
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IV in Theory

It can be shown that

β̂IV =
cov(Y ,Z)
cov(D,Z)

=
λ̂1

δ̂1

is a consistent estimator of β under the exclusion restriction
cov(Z , u) = 0

This estimator is nothing but the reduced-form coefficient
λ̂1 =

cov(y,Z)
var(Z) ...

divided by the first stage δ̂1 =
cov(D,Z)

var(Z)

Later we will see that this interpretation is useful
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Classic IV Example: Moving to Opportunity

Research question: does moving to a better neighborhood
affect adults and children?

The Moving to Opportunity Program (MTO)
I Large-scale experiment with people in public housing in

several US cities in 1996
I Treatment group 1: voucher for private rental housing in

low-poverty neighborhood
I Treatment group 2: voucher for private rental housing (no

strings attached)
I Control group: no voucher

This experiment has been evaluated by Kling et al. (2007).
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Classic IV Example: Moving to Opportunity

50% of voucher recipients actually moved; most to better
neighborhoods
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Moving to Opportunity: Empirical Challenge

MTO was a randomized experiment
I Z ∈ {0, 1} is the instrument, D ∈ {0, 1} is the treatment
I but not everyone who received a voucher actually moved

We can estimate an Intention-to-Treat (ITT) effect by using the
reduced form

yi = γ0 + γ1Zi + εi

ITT is useful for policy evaluation
I But it does not tell us much about the causal effect of

moving
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Moving to Opportunity

Suppose we are interested in the treatment effect on the treated,
in this case the causal effect of moving
I but we cannot force voucher recipients to move...

IV allows us to estimate this treatment effect under three
conditions

1. Z is as good as randomly assigned

2. Z has no direct effect on the outcome

3. Z has a sufficiently strong effect on D
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Moving to Opportunity: The Wald Estimator

We can estimate three causal effects

1. First stage: the causal effect of Z on D:
P(D = 1|Z = 1) − P(D = 1|Z = 0)

2. Reduced form (ITT): the causal effect of Z on Y :
E(Y |Z = 1) − E(Y |Z = 0)

3. Treatment effect of interest: the causal effect of D on Y :
Y(1) − Y(0) = E(Y |D = 1) − E(Y |D = 0)

The Wald Estimator relates all three effects

E(Y |D = 1) − E(Y |D = 0) =
E(Y |Z = 1) − E(Y |Z = 0)

P(D = 1|Z = 1) − P(D = 1|Z = 0)
(1)
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Moving to Opportunity: The Wald Estimator

β̂IV = E(Y |D = 1)−E(Y |D = 0) =
E(Y |Z = 1) − E(Y |Z = 0)

P(D = 1|Z = 1) − P(D = 1|Z = 0)

I difference in outcomes by groups intended and not intended
for treatment

I divided by difference in the actual treatment

Example:
I Suppose the difference in outcomes

E(Y |Z = 1) − E(Y |Z = 0) is 10
I and we know that 50% of voucher recipients moved (but

noone else)
I In this case, β̂IV = 10

0.5 = 20
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Moving to Opportunity

Wald estimator: TOT; denominator: CM
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Classic IV Example: Angrist & Evans (1998)

Angrist & Evans (1998) study the effect of children on female
labor supply

Their most basic regression is

hoursi = α+ βkidsi + ui

The number of children is almost certainly endogenous:
I fertility is a choice, and so is labor supply
I richer families can afford more children and lower labor supply
I couples differ in their preferences over fertility and labor

supply

19 / 99



Classic IV Example: Angrist & Evans (1998)

Ideal experiment: randomly assign children to families

IV in Angrist & Evans (1998): sex of the first two children
I the sex of a child is as good as random
I couples tend to have a preferences for mixed-sex offspring
I couples with two boys or two girls are more likely to have a

third child

Analysis is purely based on families with two or more children
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Classic IV Example: Angrist & Evans (1998)

The components of the IV estimator

First stage: effect of same-sex children on the likelihood of having
a third child

kidsi = δ0 + δ1samesexi + ei

Reduced form:

hoursi = λ0 + λ1samesexi + ηi

Exclusion restriction: same-sex children unrelated with personal
characteristics⇒ cov(samesexi , ui) = 0
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Classic IV Example: Angrist & Evans (1998)

The following analysis is based on a small sub-sample of Angrist &
Evans (1998)

Descriptive statistics indicate that in 50% of all families the first
two children had the same sex

This is what we would expect. Any different result would be a red
flag
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Classic IV Example: Angrist & Evans (1998)

Now let’s look at the simple OLS regression

Each additional child (above two) decreases weekly work hours on
average by 2.66
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Classic IV Example: Angrist & Evans (1998)
The first stage: is the instrument relevant to explain the
number of kids?

Important things to discuss in an IV paper
I Does the first-stage coefficient make sense (sign,

magnitude)?
I Is the first-stage correlation strong enough (is the F-Statistic

of the instrument >10)
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Classic IV Example: Angrist & Evans (1998)

In this case...
I families with same-sex children have more children
I the coefficient is small: out of 14 families with same-sex

children, one has an additional child
I the t-statistic of the instrument is strong enough (implied

F-Statistic: F = 40.96)
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Classic IV Example: Angrist & Evans (1998)
2SLS estimate

This table reports the second-stage estimates
I the regressor is the number of children predicted by the

same-sex instrument
I the effect is stronger than the OLS estimate (-2.66)
I it is statistically significant at the 10%-level
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Classic IV Example: Angrist & Evans (1998)

To develop a better intuition of how IV works, it is useful to look
at the reduced form and first stage

The IV estimator is the reduced-form divided by the first stage

β̂IV =
λ̂1

δ̂1
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Intuition behind the IV

Start with the reduced form:
I having same-sex children decreases weekly work hours by

0.39

Now consider the first stage
I having same-sex children increases the number of children by

0.07

If an increase in the number of children by 0.07 reduces the
number of work hours by 0.39...
I then an increase by one child reduces work hours by

0.39/0.07 = 5.56

For this reason, we often say that we “scale up” the reduced
form by the first stage
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Classic IV Example: Angrist & Evans (1998)

So we have that β̂IV < β̂OLS . Does this make sense?

Explanation 1: OLS estimator is upward biased (i.e. closer to
zero)
I there could be an omitted variable (for example family wealth)
I both the correlation with kids and the direct effect on hours

need to have the same sign
I e.g. cov(wealth, kids) > 0 and cov(wealth, hours|kids) > 0 or

both negative

Explanation 2: IV effect measures the effect for a specific
population
I only 1 in 14 families “respond” to the instrument
I families who respond may not be the average family...
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Local Average Treatment Effects (LATE)

So far, we implicitly assumed that the potential outcomes are
constant across units. But what if potential outcomes are
heterogeneous?

Consider a case with a binary instrument Zi ∈ {0, 1} the the
treatment statuses
I D1i = i’s treatment status when Zi = 1
I D0i = i’s treatment status when Zi = 0

The observed treatment status is

Di = D0i + (D1i − D0i)Zi = δ0 + δ1iZi + ηi

Note that the effect of the IV on treatment may differ between
individuals
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Local Average Treatment Effects (LATE)

We divide the population into four groups depending on their
reaction to the instrument

1. Compliers: people who react to the instrument as expected,
D1i = 1 and D0i = 0

2. Always-takers: people who always take the treatment
regardles of Z, D1i = D0i = 1

3. Never-takers: people who never take the treatment
regardless of Z, D1i = D0i = 0

4. Defiers: people who react to the instrument in the wrong
direction, D1i = 0 and D0i = 1

From any dataset, it is impossible to see who belongs to what
group
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The Angrist-Imbens-Rubin Causal Model

Angrist et al. (1996) define the minimum set of assumptions for
the identification of a causal effect for the relevant subgroup of
the population

As an example, consider Angrist (1990): the impact of being a
Vietnam veteran on earnings
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The Vietnam Draft Lottery (Angrist, 1990)
Context:
I In the 1960s and 70s young men in the US were at risk of

being drafted for military service in Vietnam.
I Fairness concerns led to the institution of a draft lottery in

1970 that was used to determine priority for conscription

In each year from 1970 to 1972, random sequence numbers
were randomly assigned to each birth date in cohorts of
19-year-olds.
I Men with lottery numbers below a cutoff were eligible for the

draft.
I Men with lottery numbers above the cutoff were not.

But compliance was not perfect
I Many eligible men were exempted from service for health or

other reasons.
I Others, who were not eligible, nevertheless volunteered for

service.
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The Vietnam Draft Lottery (Angrist, 1990)

Idea: use lottery outcome as an instrument for veteran status

Is there a first stage? the lottery did not completely determine
veteran status, but it certainly mattered

What about the exclusion restriction?
I the lottery was random
I it seems reasonable to assume that its only effect was on

veteran status
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The Vietnam Draft Lottery (Angrist, 1990)

The instrument is thus defined as follows:
I Zi = 1 if lottery implied individual i would be draft eligible,
I Zi = 0 if lottery implied individual i would not be draft eligible.

The instrument affects treatment, which in this application
amounts to entering military service.

The econometrician observes treatment status as follows:
I Di = 1 if individual i served in the Vietnam war (veteran),
I Di = 0 if individual i did not serve in the Vietnam war (not

veteran).
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The Angrist-Imbens-Rubin Causal Model

In Angrist (1990), the main research question is whether veteran
status has a causal effect on earnings

The causal effect of veteran status, conditional on draft eligibility
status, is defined as

Yi(1,Zi) − Yi(0,Zi)

We are unable to identify individual treatment effects, because
we do not observe all potential outcomes
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The Angrist-Imbens-Rubin Causal Model: Assumptions

Assumption 1: Random Assignment (ignorability)

All units have the same probability of assignment to treatment

Pr(Zi = 1) = Pr(Zj = 1). (2)

Given random assignment we can identify and estimate the two
intention to treat causal effects:

E(Di |Zi = 1) − E(Di |Zi = 0) =
cov(Di ,Zi)

var(Zi)
(3)

E(Yi |Zi = 1) − E(Yi |Zi = 0) =
cov(Yi ,Zi)

var(Zi)
. (4)
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The Angrist-Imbens-Rubin Causal Model: Assumptions

Assumption 2: Non-zero average causal effect of Z on D

The probability of treatment must be different in the two
assignment groups:

Pr(Di1 = 1) , Pr(Di0 = 1) (5)

This is the equivalent of the first stage in the conventional IV
approach.
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The Angrist-Imbens-Rubin Causal Model: Assumptions

Assumption 3: Exclusion Restriction

The instrument affects the outcome only through the treatment

Yi(Di , 0) = Yi(Di , 1) = Yi(Di) (6)

Given treatment, assignment does not affect the outcome. So
we can define the causal effect of Di on Yi as

Yi1 − Yi0. (7)

This difference is not observed in the data. We need to assume
that assumption 3 holds and bring good arguments in favour of it.
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The Angrist-Imbens-Rubin Causal Model: Assumptions

Assumption 4: Monotonicity
I The instrument affects the treatment status of all units in

the same direction
I Binary case: no one does the opposite of his/her

assignment
I I.e. there are no defiers

Di1 ≥ Di0 ∀i (8)

Assumptions 2 and 4 together give Strong Monotonicity and
ensure that:
I there is no defier and
I there exists at least one complier
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Compliance types

Di0

0 1
0 never-taker defier

Di1 1 complier always-taker

Compliance types by treatment status and instrument
Zi

0 1
0 complier OR never-taker never-taker OR defier

Di 1 always-taker or defier complier OR always-taker
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Compliance types

Compliance types by treatment status and instrument given
monotonicity

Zi

0 1
0 complier OR never-taker never-taker

Di 1 always-taker complier OR always-taker
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Back to the example (Angrist, 1990)

A1: instrument is as good as randomly assigned
I draft eligibility was assigned by a lottery...

A2: can have no direct effect on the outcome variable (earnings)

I this is debatable. Angrist argues that it holds

A3: instrument affects the treatment
I this can be checked

A4: monotonicity: a man who serves if not draft eligible, would
also serve if draft eligible
I this seems plausible
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Local Average Treatment Effect (Angrist, 1990)

Under the assumptions A1-A4, the IV approach in Angrist (1990)
identifies a local average treatment effect (LATE)

The effect is “local” because
I it identifies the effect on the compliers
I ... the causal effect of the draft on earnings for men whose

treatment status is changed by the instrument
I i.e. on men who are drafted if eligible but who wouldn’t

volunteer if not eligible

The LATE is different from the ATE because it excludes men
who
I would be exempt from the draft regardless of their eligibility

(never-takers)
I would volunteer regardless of their eligibility (always-takers)
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The LATE theorem

Given assumptions 1-4,

E(Yi |Zi = 1) − E(Yi |Zi = 0)
E(Di |Zi = 1) − E(Di |Zi = 0)

= E(Yi1 − Yi0|Di1 > Di0) (9)

= E(Yi1 − Yi0|complier). (10)

It shows that the Wald estimator equals the average treatment
effect for compliers
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The LATE theorem

Proof: Let πc , πn, πa be the population proportions of compliers,
never-takers and always-takers respectively.
Consider the least squares regression of Y on a constant and Z.
The slope coefficient in that regression estimates

E[Yi |Zi = 1] − E[Yi |Zi = 0]. (11)

Consider the first term:

E[Yi |Zi = 1] =E[Yi |Zi = 1, complier] Pr(complier|Zi = 1)

+ E[Yi |Zi = 1, never-taker] Pr(never-taker|Zi = 1)

+ E[Yi |Zi = 1, always-taker] Pr(always-taker|Zi = 1).

This equals

E[Yi1|complier]πc + E[Yi1|never-taker]πn + E[Yi1|always-taker]πa .
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The LATE theorem

Similarly,

E[Yi |Zi = 0] =E[Yi |Zi = 0, complier]Pr(complier|Zi = 0)

+ E[Yi |Zi = 0, never-taker]Pr(never-taker|Zi = 0)

+ E[Yi |Zi = 0, always-taker]Pr(always-taker|Zi = 0).

This equals

E[Yi0|complier]πc + E[Yi0|never-taker]πn + E[Yi1|always-taker]πa

(12)
Hence the difference is

E[Yi |Zi = 1] − E[Yi |Zi = 0] = E[Yi1 − Yi0|complier]πc . (13)
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The LATE theorem

The same argument can be used to show that the slope coefficient
in the regression of D on Z is

E[Di |Zi = 1] − E[Di |Zi = 0] = πc . (14)

The instrumental variables estimand, the ratio of the two
reduced form estimands, equals the local average treatment
effect:

E(Yi1 − Yi0|complier) (15)

The Angrist-Imbens-Rubin approach concludes that the only
causal effect that IV can identify with a minimum set of
assumptions is the causal effect for compliers, i.e. the Local
Average Treatment Effect (LATE).
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The LATE theorem

Intuitively this makes sense because compliers are the only
group on which the data can be informative:
I Compliers are the only group with units observed in both

treatments (given that defiers have been ruled out).
I Always takers and never-takers are observed only in one

treatment.

The LATE is a controversial parameter,
I it is defined for an unobservable sub-population
I it is instrument dependent

Therefore, it is no longer clear which interesting policy question
it can answer.
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Better LATE than never?

Under A1-A4, IV ensures internal validity of the LATE

But LATE has no (or little) external validity. Without further
assumptions
I we cannot generalize to the population
I we cannot generalize to different contexts

Despite these shortcomings, LATE is often the best we can do
I similar estimates from different contexts increase external

validity

There are many relevant positive and normative questions for
which the LATE seems to be an interesting parameter in addition to
being the only one we can identify without making unreasonable
assumptions.
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Extrapolating LATE to the Full Population

We cannot consistently estimate the average treatment effect for
always-takers and never-takers
I but have some information about these subpopulations...

We can estimate E[Yi0|never-taker] and E[Yi1|always-taker].

We can look for evidence of heterogeneity in outcomes by
compliance status, by comparing these to E[Yi0|complier] and
E[Yi1|complier].

If the outcomes differ substantially between groups, it is
difficult to extrapolate from LATE
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Extrapolating LATE to the Full Population

We can estimate πc , πn, πa from the population distribution of
treatment and instrument status:

E[Di |Zi = 0] = πa , E[Di |Zi = 1] = πa + πc .

which we can invert to infer the population shares of the different
types:

πa = E[Di |Zi = 0],

πc = E[Di |Zi = 1] − E[Di |Zi = 0],

πn = 1 − E[Di |Zi = 1].
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Extrapolating LATE to the Full Population
Now consider average outcomes by instrument and treatment
status:

E[Yi |Di = 0,Zi = 0] =
πc

πc + πn
E[Yi0|complier] +

πn

πc + πn
E[Yi0|never-taker]

E[Yi |Di = 0,Zi = 1] = E[Yi0|never-taker]

E[Yi |Di = 1,Zi = 0] = E[Yi1|always-taker]

E[Yi |Di = 1,Zi = 1] =
πc

πc + πa
E[Yi1|complier] +

πa

πc + πa
E[Yi1|always-taker]

From these relationships we can calculate E[Yi0|complier] and
E[Yi1|complier].
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LATE in Angrist (1990)

The simple OLS regression leads to:

log(earnings)i = 5.44 − 0.021 × veterani

The following table contains population sizes of the four
treatment/instrument samples.

Treatment status by assignment (Angrist, 1990)
Zi

0 1
0 5,948 1,915

Di 1 1,372 865
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LATE in Angrist (1990)

For example, with a high lottery number (Zi = 0), 1,372
individuals serve and 5,948 do not.

Using these data we can calculate the proportions of the various
compliance types under the no-defiers assumption.

For example, the proportion of never-takers is estimated as the
conditional probability that Di = 0 given Zi = 1.

Pr(never-taker) =
1915

1915 + 865

The estimated proportions are never-taker (0.6888), defier (0),
complier (0.1237) always-taker (0.187).
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LATE in Angrist (1990)

Estimated average log earnings (Angrist, 1990)
Zi

0 1
0 5.45 5.40

Di 1 5.41 5.43

Estimated average log earnings by type (Angrist, 1990)
Type Yi0 Yi1

Never-taker 5.40
Complier 5.69 5.46

Always-taker 5.41
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LATE in Angrist (1990)

The second table on the previous slide gives the estimated
averages for the four compliance types, under the exclusion
restriction

The exclusion restriction is the key assumption here. There are
a number of reasons why it may be violated, e.g., never-takers
taking actions to avoid military service if draft eligible.

The local average treatment effect is -0.23, a 23% drop in
earnings as a result of serving in the military.
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LATE in Angrist (1990)

Is the LATE informative about the total population?

Average log earnings for never-takers are 5.40, 29% lower than
average earnings for compliers who do not serve in the military.
I never-takers are substantially different to compliers
I average effect of 23% for compliers need not be informative

about never-takers

In contrast, average log earnings for always-takers are only 6%
lower than those for compliers who serve,
I differences between always-takers and compliers are

considerably smaller.

Recent work formalizes the extrapolation problem: Mogstad &
Torgovitsky (2018), Mogstad et al. (2018)
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IV with Covariates

It is possible to condition on pre-treatment covariates
I the covariates have to be included in the first and second

stage (and reduced form)

The IV assumptions are different
I First stage: cov(Z ,D |X) , 0 has to be sufficiently strong
I Exclusion restriction: cov(Z , u|X) = 0 has to hold conditional

on X
I Monotonicity also has to hold conditional on X
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IV with Multiple Instruments

It is possible to have multiple instrumental variables

2SLS combines instruments to get a single (more precise)
estimate

Assumptions needed:
I Each instrument needs to be as good as randomly assigned
I Each instrument needs to satisfy the exclusion restriction
I The joint first stage has to be strong enough
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IV with Multiple Instruments

We can write the model in matrix form

y = Xβ+ ε (16)

W = Zγ + η (17)

I X is a (N × K ) matrix of endogenous and exogenous
regressors

I Z is a (N × Q) matrix of instruments and exogenous
regressors, Q ≥ K

We say
I a model is just identified if Q = K
I a model is overidentified if Q > K
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Instrument Strength

For any meaningful analysis, the instrument has have a
sufficiently strong effect on the regressor(s)

If the instrument doesn’t shift the treatment a lot, we divide by a
very small first stage coefficient

There are three problems with weak instruments
I high variance of the estimator⇒ unreliable inference
I inconsistency of the IV estimator
I small sample bias
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General Model in Matrix Notation

Remember: the OLS estimator is

β̂
OLS

= (X ′X)−1 X ′Y

The TSLS estimator includes a projection of X on Z and,
therefore, is

β̂
2SLS

=
(
X ′Z (Z ′Z)−1 Z ′X

)−1
X ′Z (Z ′Z)−1 Z ′Y

β̂
2SLS

= (X ′PzX)−1 X ′PzY

Where Pz = Z (Z ′Z)−1 Z ′ is the projection matrix and

X̂ = PzX = Z (Z ′Z)−1 Z ′X
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Variance of OLS and TSLS

Asymptotic variance of OLS estimator with K regressors

Âvar
(
β̂

OLS
)
= σ̂2 (X ′X)−1

with
σ̂2 = (N − K)−1û′û

TSLS equivalent:

Âvar
(
β̂

2SLS
)
= σ̂2

(
X̂
′
X̂
)−1

= σ̂2
(
X ′Z (Z ′Z)−1 Z ′X

)−1

⇒ a weak first-stage correlation will increase the variance
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Variance of TSLS, K = Q = 1

It can be shown that

Âvar
(
β̂2SLS

)
= σ̂2 1

Nρ2
xzσ

2
x
,

where ρxz = cov (zi , xi) / (σzσx).

This equation offers several important insights:
I An increase in the sample size decreases the standard errors
I The standard error is higher the higher the variance of the

residuals σ̂2 and the lower the variation in xi

I The standard error decreases with the strength of the first
stage

I Also: Âvar
(
β̂2SLS

)
> Âvar

(
β̂OLS

)
because ρxx = 1

Note: we assumed here homoskedasticity of the error terms
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Weak Instruments: Inconsistency
Consider the simultaneous equations model

yi = α+ βxi + εi

xi = µ+ πzi + vi .

The OLS and IV estimators are given by

β̂OLS =
cov(yi , xi)

var(xi)

β̂2SLS =
cov(yi , x̂i)

var (̂xi)

and the plims of the estimators are

plimβ̂OLS = β+
σxε

σ2
x

plimβ̂2SLS = β+
σx̂ε

σ2
x̂

.
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Weak Instruments: Inconsistency

This yields

plimβ̂2SLS − β

plimβ̂OLS − β
=
σx̂ε/σxε

σ2
x̂
/σ2

x
=
σx̂ε/σxε

R2
xz

.

The inconsistency of the 2SLS estimator relative to the OLS
estimator is related to the relative endogeneity of z and x.

Notice that R2
xz , is the R2 from the first stage regression.

I The instrument z may be almost as good as randomly
assigned but not quite.

I Hence, σx̂ε may be small but not quite zero.

However, even if σx̂ε is small compared to σxε, the relative
inconsistency of the 2SLS estimator may still be important as
long as R2

xz is also small, i.e. as long as the correlation of z and x
is low.
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Small Sample Bias

We know that OLS is consistent and is unbiased (under
standard assumptions).

In finite samples, 2SLS is consistent but biased (see appendix)

Problem is worst when

1. Instruments are weak AND

2. The model is heavily overidentified
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Intuition for Small Sample Bias

Suppose the instrument is completely uncorrelated with the
endogenous regressor.
I With an infinite amount of data, cov(xi , zi) is going to be

exactly zero, and the IV estimator cannot be computed
anymore.

I In a small sample, cov(xi , zi) is not going to be literally zero,
just small.

I So the observed correlation is only due to sampling
variation, i.e. noise
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Intuition for Small Sample Bias

In any particular sample, z and x will have some slight random
correlation
I Variation in the sample just comes from ε

I This means x̂ picks up some variation that is just like the
original variation in x,

I so it is not in any way purged of the endogenous variation
in x

Since x is correlated with 2nd-stage error, x̂ will also be correlated
with 2nd-stage error. Consequence:
I OLS and 2SLS estimate the same quantity (on average)
I If the true cov(x, z) , 0 but small 2SLS is biased towards OLS
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Weak Instruments - What to Do?

If you consider using more than one instrument (hint: DON’T!),
show first the results of the just-identified model, using your
best instrument.
I Monte Carlo simulations show that just-identified 2SLS is

approximately unbiased
I But just-identified estimates are also unstable and imprecise

Show the F-Statistic of the first stage
I Stock et al. (2002) suggest that an F-Statistic > 10 indicates

that the instruments are sufficiently strong
I But this is a rule of thumb, nothing more.
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Are Weak Instruments a Problem in Practice?

No! say most researchers⇒ after all we can test for weak
instruments

Yes! says Alwyn Young (2019): ‘Consistency without Inference”
I Looks at >1300 IV estimates from the AER and AEJs
I Uses bootstrap and jackknife procedures to assess inference

Result: IVs are weaker than we think
I In most studies, the results are driven by very few

observations
I The F-Statistic does not reflect this⇒ uninformative
I IV estimator has very low power
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What about F > 10?

Consider the model

yi = α+ βxi + εi

xi = µ+ πzi + vi .

Lee et al. (2020) show that F > 10 does not permit valid
inference about β based on the t-statistic β̂/se(̂β).
I The critical values of t = ±1.96 are too small of inference with

a type-I error α = 0.05
I They show that reliable inference at the 5% level is possible

with F > 143

All hope is lost?
I No! Because we can use larger critical values
I But we are less likely to detect a statistically significant effect
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Weak Instruments without Homoskedasticity

So far we derived the standard case with homoskedastic errors

But this assumption is often violated due to heteroskedasticity,
serial or spatial auto-correlation, or clustering
I The “conventional” (non-robust) F-Statistic results in standard

errors that are too small

Alternatives
I Robust F-tests (Kleibergen & Paap, 2006)
I Effective F-statistic (Montiel Olea & Pflueger, 2013) (scales up

the non-robust F)
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Recommendations: Instrument Strength
Weak instruments are a problem for inference
I inflated variance makes inference less reliable
I it can exacerbate the inconsistency of the estimator as well as

the small sample bias

So what to do?
I Report the non-robust F and adjust the standard errors using

the critical values from Lee et al. (2020)
I Report the effective F-Stat by Montiel Olea & Pflueger (2013)

and use their critical values to determine whether IVs are
weak

I If the IVs are weak, don’t discard the paper but use robust
methods based on Anderson & Rubin (1949) (Andrews et al.,
2006; Moreira, 2009)

For more information, see Andrews et al. (2019)
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Continuous Instruments

It is also possible to obtain an IV estimate with a continuous
instrument and/or treatment

The assumptions (first stage, exclusion restriction, monotonicity)
remain the same

The LATE is more difficult to interpret
I units differ in their compliance intensity
I i.e. some react to the instrument more than others
I LATE is the weighted average of unit causal effects over the

support of D
I weights are determined by the share of compliers in each bin

of D

Often useful to use the binary case as reference (high/low
intensity of treatment and instrument)
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IV Example: Elsner & Wozny (2018)

We revisit the paper on the effect of radiation on cognitive skills

yims = α+ βCs13786
ms + X ′

ims
γ+ δs + εims

Challenge: the initial level of radiation may be endogenous
I balancing tests don’t show differences conditional on Xims

and δs

I but there could be unobserved differences
I especially because the raw differences suggest that the

results could be driven by unobservables
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IV Example: Elsner & Wozny (2018)

We use an instrument that predicts the level of radiation based
on two factors

1) The amount of rainfall in the critical ten days after the desaster
(May 1-10, 1986)
I radioactive plume was transported by (East) winds
I areas where contaminated when it rained while the plume

was hanging over it

2) The amount of radioactive matter in the plume
I the plume moved from south-east to north-west Germany
I lots of radioactive matter was “rained off” in the South
I a lot less radioactive matter was left in the North
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IV Example: Elsner & Wozny (2018)
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IV Example: Elsner & Wozny (2018)

A DAG helps...
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IV Example: Elsner & Wozny (2018)

Raw first-stage correlation
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First stage

Cs13786
ms = δ0 + δ1 ln(particles × rain)ms + X ′

ims
γ+ δs + ei
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IV Example: Elsner & Wozny (2018)
Graphic first stage

Also show that first stage only exists in 1986 82 / 99



Exclusion Restriction

Assumption: cov(ln(particles × rain)ms , ui |Xims , δs)

Important: Xims includes average rainfall on May 1-10
(1981-1985)
I hence, the instrument represents deviations from the

average rainfall
I these deviations are weighted by the amount of radioactive

matter in the plume

Assumption: abnormal rainfall on 10 days in 1986 only affects
cognitive skills in 2010 through its effect on radiation
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Exclusion Restriction

This identification assumption is not testable. But we can bring
supportive evidence.

Here we regress individual characteristics on the instrument

Column 4: conditional on State FE and municipality characteristics
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Exclusion Restriction

Column 4: conditional on State FE and municipality characteristics

⇒ instrument unrelated to observable characteristics
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2SLS Results

IV result: 1SD increase in CS137⇒ 8.4% of a SD reduction in test
scores

86 / 99



2SLS Results incl. Placebos

Outcomes: log nr of diagnoses
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Reduced Form
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Where do good IVs come from?

Theory combined with clever datas collection. Examples
I Distance from job training centers
I College openings

Variation in policies. This requires a deep institutional
knowledge. Examples
I assignment to judges with different severity
I differences in budgets across job training centers
I ...

Nature. Examples
I different levels of pollution in different places
I sex of the first two children
I ...
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IV: Cookbook
1) Explain your identification strategy very clearly
I start with the ideal experiment; why is your setting different?

Why is your regressor endogenous?
I Explain theoretically why there should be a first stage and

what coefficient we should expect
I Explain why the instrument is as good as randomly

assigned
I Explain theoretically why the exclusion restriction holds in

your setting

2) Show and discuss the first stage
I Best to start with a raw correlation
I Do the sign and magnitude make sense?
I Assess the strength of the instrument using state-of-the-art

techniques
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IV: Cookbook
3) Bring supportive evidence for instrument validity
I Show that the instrument does not predict pre-treatment

characteristics
I Can you provide evidence in support of the exclusion

restriction?
I Use auxiliary tests, for example Kitagawa (2015) and Huber &

Mellace (2015)
I Consider using the plausibly exogenous bounding procedure

by Conley et al. (2012)

4) Discuss the results in detail
I Show the OLS and 2SLS results, both with varying sets of

controls
I Comment on the differences between both (bias, LATE, etc)
I Show the reduced form
I If the reduced form isn’t there, the effect isn’t there (MHE)
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Final Comments on IV

Friends tell their friends not to use IV...

This may be an extreme view, but IVs have become less popular
in recent years

I It is very difficult to find an IV that fulfills the exclusion
restriction

I The LATE is often not the desired policy parameter
I IV has unfavourable small sample properties

Many “classic” IVs have been shown to be invalid
I Quarter of birth is correlated with SES
I Twin births (IV for family size) are related to IVF and, thus, to

SES
I Rainfall affects many things...
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Final Comments on IV

In what settings are IVs used these days?
I In randomized experiments with imperfect compliance
I As a complementary identification strategy, along with FE

estimation, diff-in-diff
I In fuzzy regression discontinuity designs (next topic)
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Appendix

Formal Analysis of the small sample bias with multiple
instruments
Return to the simultaneous equation model, but with multiple
instruments as in

y = βx + η

x = Zπ+ ξ.

where Z is an N × Q matrix. OLS is biased because ηi is
correlated with ξi .
Zi uncorrelated with ξi by construction.
Zi uncorrelated with ηi by assumption.
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The 2SLS estimator is

β̂2SLS = (x′PZx)−1x′PZy = β+ (x′PZx)−1x′PZη

lβ̂2SLS − β

= (x′PZx)−1(π′Z ′ + ξ′)PZη = (x′PZx)−1π′Z ′η+ (x′PZx)−1ξ′PZη

Difficult to evaluate bias as expectation doesn’t go through
(x′PZx)−1.
However,

E (̂β2SLS − β) ≈ (E[x′PZx])−1E[π′Z ′η] + (E[x′PZx])−1E[ξ′PZη]

This approximation uses asymptotics as the number of instruments
goes to infinity at the same rate as the number of observations.
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Can show that,

E (̂β2SLS − β) ≈
σηξ

σ2
ξ

E[π′Z ′Zπ]/Q

σ2
ξ

+ 1

−1

The term E[π′Z ′Zπ]/Q
σ2
ξ

is the population equivalent of the first-stage F

statistic. Then,

E (̂β2SLS − β) ≈
σηξ

σ2
ξ

1
F + 1

The lower the F-statistic, the worse the bias will be.
As F → 0, 2SLS bias → σηξ

σ2
ξ

.

OLS bias =
σηξ

σ2
x

which equals σηξ

σ2
ξ

if π = 0.

I.e. if first stage is zero, 2SLS bias equals OLS bias.
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In general, 2SLS estimates are biased towards OLS when
1st-stage is weak.

1. Adding useless instruments increases bias because
E[π′Z ′Zπ] and σ2

ξ stay the same, but Q increases.

2. Intuitively, problem arises because 1st stage is estimated. If
we knew Zπ, we could use these as the fitted values and they
are uncorrelated with the 1st-stage error.

3. Just-identified 2SLS is approximately unbiased (in Monte
Carlo simulations). Difficult to show this formally because it
has no moments.

4. However with weak instruments, just-identified estimates are
unstable and imprecise.

5. Some suggest want to have 1st-stage F-statistic of at least 10
to be safe using 2SLS.
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